Friday, August 7, 2015

Programs for interview



http://www.geeksforgeeks.org/find-whether-an-array-is-subset-of-another-array-set-1/



A Product Array Puzzle


Given an array arr[] of n integers, construct a Product Array prod[] (of same size) such that prod[i] is equal to the product of all the elements of arr[] except arr[i]. Solve it without division operator and in O(n).
Example:
arr[] = {10, 3, 5, 6, 2}
prod[] = {180, 600, 360, 300, 900}
Algorithm:
1) Construct a temporary array left[] such that left[i] contains product of all elements on left of arr[i] excluding arr[i].
2) Construct another temporary array right[] such that right[i] contains product of all elements on on right of arr[i] excluding arr[i].
3) To get prod[], multiply left[] and right[].
Implementation:
#include<stdio.h>
#include<stdlib.h>
/* Function to print product array for a given array
 arr[] of size n */
void productArray(int arr[], int n)
{
  /* Allocate memory for temporary arrays left[] and right[] */
  int *left = (int *)malloc(sizeof(int)*n);
  int *right = (int *)malloc(sizeof(int)*n);
  /* Allocate memory for the product array */
  int *prod = (int *)malloc(sizeof(int)*n);
  int i, j;
  /* Left most element of left array is always 1 */
  left[0] = 1;
  /* Rightmost most element of right array is always 1 */
  right[n-1] = 1;
  /* Construct the left array */
  for(i = 1; i < n; i++)
    left[i] = arr[i-1]*left[i-1];
  /* Construct the right array */
  for(j = n-2; j >=0; j--)
    right[j] = arr[j+1]*right[j+1];
  /* Construct the product array using
    left[] and right[] */
  for (i=0; i<n; i++)
    prod[i] = left[i] * right[i];
  /* print the constructed prod array */
  for (i=0; i<n; i++)
    printf("%d ", prod[i]);
  return;
}
/* Driver program to test above functions */
int main()
{
  int arr[] = {10, 3, 5, 6, 2};
  int n = sizeof(arr)/sizeof(arr[0]);
  printf("The product array is: \n");
  productArray(arr, n);
  getchar();
}
Time Complexity: O(n)
Space Complexity: O(n)
Auxiliary Space: O(n)
The above method can be optimized to work in space complexity O(1). Thanks to Dileep for suggesting the below solution.
void productArray(int arr[], int n)
{
  int i, temp = 1;
  /* Allocate memory for the product array */
  int *prod = (int *)malloc(sizeof(int)*n);
  /* Initialize the product array as 1 */
  memset(prod, 1, n);
  /* In this loop, temp variable contains product of
    elements on left side excluding arr[i] */
  for(i=0; i<n; i++)
  {
    prod[i] = temp;
    temp *= arr[i];
  }
  /* Initialize temp to 1 for product on right side */
  temp = 1;
  /* In this loop, temp variable contains product of
    elements on right side excluding arr[i] */
  for(i= n-1; i>=0; i--)
  {
    prod[i] *= temp;
    temp *= arr[i];
  }
  /* print the constructed prod array */
  for (i=0; i<n; i++)
    printf("%d ", prod[i]);
  return;
}
Time Complexity: O(n)
Space Complexity: O(n)
Auxiliary Space: O(1)
Please write comments if you find the above code/algorithm incorrect, or find better ways to solve the same problem.

No comments:

Post a Comment